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Numerical and analytical solutions to the steady compressible Euler equations corre-
sponding to a compressible analogue of the linear Stuart vortex array are presented.
These correspond to a homentropic continuation, to finite Mach number, of the Stuart
solution describing a linear vortex array in an incompressible fluid. The appropriate
partial differential equations describing the flow correspond to the compressible
homentropic Euler equations in two dimensions, with a prescribed vorticity–density–
streamfunction relationship. In order to construct a well-posed problem for this
continuation, it was found, unexpectedly, to be necessary to introduce an eigenvalue
into the vorticity–density–streamfunction equation. In the Rayleigh–Janzen expansion
of solutions in even powers of the free-stream Mach number M∞, this eigenvalue is
determined by a solvability condition. Accurate numerical solution by both finite-
difference and spectral methods are presented for the compressible Stuart vortex,
over a range of M∞, and of a parameter corresponding to a confined mass-flow rate.
These also confirm the nonlinear eigenvalue character of the governing equations. All
solution branches followed numerically were found to terminate when the maximum
local Mach number just exceeded unity. For one such branch we present evidence for
the existence of a very small range of M∞ over which smooth transonic shock-free
flow can occur.

1. Introduction
This is the third paper in a sequence in which we study the effect of compressibility

on steady incompressible vortical solutions of Euler’s equations in two dimensions.
Previous papers (Moore & Pullin 1987, 1998) were devoted to the compressible
version of the hollow vortex pair and the compressible version of Hill’s spherical
vortex respectively. In the present work we investigate the effect of compressibility
on the Stuart vortex array. Ardalan, Meiron & Pullin (1995) have studied the related
problem, namely the hollow vortex array.

The Stuart vortex is a model of the inviscid mixing layer between two parallel
streams moving with different speeds. To describe it we adopt axes Oxy moving with
mean velocity of the two streams and represent the velocity field (u(x, y), v(x, y)) by a
streamfunction ψ(x, y) such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (1.1)

with vorticity ω(x, y) given by

ω = −∇2ψ. (1.2)
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Any steady vortical solution of the incompressible Euler equations has a constant
vorticity along pathlines, so that

ω = F(ψ). (1.3)

The Stuart vortex corresponds to the choice (Stuart 1967)

ω = −e−2ψ, (1.4)

so that, in view of (1.2)

∇2ψ = e−2ψ. (1.5)

The most general solution of (1.5) was found by Liouville: see Ames (1965), Forsyth
(1959). Stuart (1967) found a family of exact solutions of (1.5) which are given by

ψ0 = ln
(
K cosh y +

√
K2 − 1 cos x

)
, (1.6)

where 0 6 K < ∞ is a parameter defining the family. We note the following properties
of (1.6).

(i) As y → ±∞,

ψ0 ∼ y sgn (y) + ln

(
K

2

)
+ O

(
e−|y|

)
, (1.7)

so that

u0 ∼ sgn (y), v0 ∼ 0, (1.8)

which shows that the velocity asymptotes to opposed uniform streams each with unit
speed when y → ±1. The displacement thickness is d = ln (K/2).

(ii) For K > 1 ψ0 is 2π-periodic with respect to x and is even about the lines
x = 0,±π,±2π . . ..

(iii) For K > 1 the points with coordinates (x = (2n + 1)π, y = 0) are hyperbolic
stagnation points and (x = 2nπ, y = 0) are elliptical stagnation points, n integer. The
streamline pattern is thus a periodic array of cat’s eyes, the dividing streamline being

ψ0 = ln (K +
√
K2 − 1).

The vorticity is ω = (K cosh y +
√
K2 − 1 cos x)−2 and it follows that the ratio of

the vorticity at the elliptical stagnation points to that at the hyperbolic points is∣∣∣∣ω0(π, 0)

ω0(0, 0)

∣∣∣∣ = (K +
√
K2 − 1)4. (1.9)

For K = 1 this is unity corresponding to a solution consisting of a parallel shear flow

u = tanh y, v = 0. (1.10)

(iv) When K → ∞, the vorticity ratio is infinite and ψ0 can be shown to describe
the potential flow produced by an array of point vortices at (x, y) = ((2n + 1)π, 0),
n = −∞, . . .∞.

2. The compressible Stuart vortex
The governing equations are the compressible Euler equations

ω × u = −∇( 1
2
u2)− 1

ρ
∇p, (2.1)

∇ · (ρu) = 0, (2.2)

(u · ∇)S = 0. (2.3)
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Here u is the velocity, ω is the vorticity, S is the entropy, p is the pressure and ρ is
the density.

We choose to satisfy (2.3) by insisting that S = S0 where S0 is independent of
position. This will be seen to give a homentropic continuation of the Stuart vortex
solution to finite Mach number; see Moore & Pullin (1998) for a discussion of
both this, and alternative continuation branches for the Hill’s spherical vortex. For
homentropic flow of a calorically perfect gas we have

p = Aργ, (2.4)

where A is independent of position and γ is the ratio of specific heats. Equation (2.4)
enables (2.1) to be written in the form

ω × u = −∇H, (2.5)

where
H = 1

2
u2 +

γ

γ − 1

p

ρ
, (2.6)

is the total enthalpy. It follows from (2.5) that

u · ∇H = 0, (2.7)

For plane motion, we can introduce a mass streamfunction ψ(x, y) such that

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (2.8)

In view of (2.7), we have H = H(ψ). Expressing the vorticity as ω = ω(x, y)k, where
k is normal to the plane of flow, and taking components of (2.5) leads to

ω

ρ

∂ψ

∂x
= −∂H

∂x
= −∂ψ

∂x

dH

dψ
, (2.9)

ω

ρ

∂ψ

∂y
= −∂H

∂y
= −∂ψ

∂y

dH

dψ
. (2.10)

so that
ω

ρ
= −dH

dψ
≡ V (ψ), (2.11)

a special case of a relation obtained by Vazsonyi (1945).
We can now obtain equations for ψ and ρ by substitution of (2.8) into (2.11) and

(2.6), with the result

∇2ψ − 1

ρ
(∇ψ·∇ρ) = −ρ2V (ψ), (2.12)

1

2ρ2
(∇ψ)2 +

Aγργ−1

γ − 1
= H0 −

∫ ψ

∞
V (ψ′) dψ′, (2.13)

where H0 is a constant of integration.
We have non-dimensionalized the equations to conform with the scheme implicit

in our description of the Stuart vortex, with the additional proviso that ρ → 1 as
|y| → ∞. Then γA = M−2∞ , where M∞ is the Mach number of the flow at infinity. If
we let |y| → ∞ we find that (2.13) implies

1
2

+
1

M2∞ (γ − 1)
= H0, (2.14)
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so that (2.13) then becomes

M2∞
2

(∇ψ)2 +
ρ2(ργ−1 − 1)

γ − 1
=
M2∞ρ2

2

(
1− 2

∫ ψ

∞
V (ψ′) dψ′

)
. (2.15)

At first glance, (2.12) together with (2.15) may appear to be of the elliptic type, owing
to the presence of the ∇2 operator in (2.12). Since, however, these equations are a form
of the steady inviscid rotational Euler equations with a prescribed vorticity–density
relation, they must of course be of the mixed elliptic–hyperbolic type. This can be
verified by differentiating (2.15) with respect to x and solving for ∂ρ/∂x. Repeating
this by differentiating with respect to y and subsequent substitution of the expressions
for ∂ρ/∂x and ∂ρ/∂y into (2.12) then gives, after some algebra, a form of the vorticity–
streamfunction equation which can be shown to be of the elliptic–hyperbolic type by
standard methods.

We must now consider the choice of the function V (ψ). We first tried the obvious
choice V (ψ) = − exp (−2ψ), but, as we discuss later, this choice proved over-restrictive.
We were thus led to the choice

V (ψ) = −e−2µψ, (2.16)

where µ is to be found as part of the solution; of course µ → 1 as M∞ → 0. The
vorticity parameter µ can be thought of as a nonlinear eigenvalue for the Stuart
vortex. The vorticity and energy equations (2.12) and (2.15) now take their final form

∇2ψ − 1

ρ
(∇ψ · ∇ρ) = ρ2e−2µψ, (2.17)

M2∞
2

(∇ψ)2 +
ρ2(ργ−1 − 1)

γ − 1
=
M2∞ρ2

2

(
1− 1

µ
e−2µψ

)
. (2.18)

With computational efficiency in mind, we use the symmetries to reduce the domain
in which we seek a solution to the semi-infinite rectangle R defined by 0 6 x 6 π,
0 6 y 6 ∞. The boundary conditions are

∂ψ

∂y
= 0 (y = 0, 0 6 x 6 π), (2.19)

∂ψ

∂x
= 0 (x = 0, 0 6 y 6 ∞) and (x = π, 0 6 y 6 ∞), (2.20)

ψ ∼ y + d as y →∞ (0 6 x 6 π), (2.21)

ρ→ 1 as y →∞ (0 6 x 6 π). (2.22)

The displacement thickness d(M2∞) is unknown, as is µ(M2∞) but we have d(0) =
ln (K/2), µ(0) = 1. We remark that there are no boundary conditions on ρ on the
sides and base of R. This is because ∂ψ/∂x = 0 implies ∂ρ/∂x = 0 and ∂ψ/∂y = 0
implies ∂ρ/∂y = 0; this follows from differentiating (2.18) with respect to x and with
respect to y.

The boundary conditions are incomplete because there is no condition which
determines the degree of concentration of the vorticity. We chose to remedy this
defect by specifying the mass flux within the cat’s eyes; thus we put

ψ(0, 0)− ψ(π, 0) = f, (2.23)
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where f is prescribed. For the incompressible Stuart vortex,

ψ(0, 0)− ψ(π, 0) = 2 ln (K +
√
K2 − 1), (2.24)

so that we can define an effective K for the Stuart vortex by

f = 2 ln (K +
√
K2 − 1). (2.25)

When K is referred to subsequently, (2.25) is implied. We remark that when K = 1,
f = 0, the incompressible solution (1.6), (1.10) with ρ = 1 is an exact solution of both
(2.17) and (2.18) for all M∞.

3. The Rayleigh----Janzen expansion
In this section we seek an approximate solution to the governing equations (2.17)–

(2.18) by expanding the dependent variables in powers of the Mach number. Thus
we introduce the expansions

ψ = ψ0 +M2
∞ψ1 +M4

∞ψ2 + . . . , (3.1)

ρ = 1 +M2
∞ρ1 +M4

∞ρ2 + . . . , (3.2)

µ = 1 +M2
∞µ1 +M4

∞µ2 + . . . . (3.3)

The first term in each expansion corresponds to the Stuart vortex and in particular

ψ0 = − 1
2

ln (1− ε2) + ln (cosh y + ε cos x), (3.4)

where we have replaced K by the parameter

ε =

√
K2 − 1

K
; (3.5)

note that K → 1 corresponds to ε→ 0 and K →∞ corresponds to ε→ 1.
Substitution of (3.1) and (3.2) into the energy equation (2.18) leads to

ρ1 = 1
2
− 1

2
e−2ψ0 − 1

2
(∇ψ0)

2. (3.6)

Use of (3.4) in (3.6) then gives

ρ1 =
ε cos x

(cosh y + ε cos x)
. (3.7)

We can now obtain the equations determining ψ1, which are

∇2ψ1 + 2e−2ψ0ψ1 = ∇ρ1 · ∇ψ0 + 2e−2ψ0 (ρ1 − µ1ψ0), (3.8)

with boundary conditions

∂ψ1

∂y
= 0 on (y = 0, 0 6 x 6 π), (3.9)

∂ψ1

∂x
= 0 on (x = 0, 0 6 y 6 ∞) and (x = π, 0 6 y 6 ∞), (3.10)

∂ψ1

∂y
→ 0 as y →∞ (0 6 x 6 π). (3.11)

We can determine µ1 by applying a solvability condition to the system (3.8)–(3.11).
Suppose that we can find a non-zero solution φ(x, y) of the equation

∇2φ+ 2e−2ψ0φ = 0, (3.12)
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with

∂φ

∂n
= 0 on ∂R, (3.13)

where R is the semi-infinite rectangle (0 6 x 6 π, 0 6 y 6 ∞) and where ∂/∂n is the
normal derivative. Then∫ ∫

R

(φ∇2ψ1 − ψ1∇2φ) dx dy =

∫ ∫
R

φ[∇ρ1 · ∇ψ0 + 2e−2ψ0 (ρ1 − µ1ψ0)] dx dy, (3.14)

and, since the left-hand side can be shown to vanish in view of (3.9)–(3.11) and (3.13),
we have ∫ ∫

R

φ[∇ρ1 · ∇ψ0 + 2e−2ψ0 (ρ1 − µ1ψ0)] dx dy = 0. (3.15)

We can verify that φ is given by

φ =
∂ψ0

∂K
, (3.16)

where ψ0 is the Stuart vortex solution, expressed in terms of the original parameter
K . (We are indebted to Professor T. Fokas for suggesting (3.16).) Substituting ψ0 into
(3.16) leads to

φ =
cosh y +K(K2 − 1)−1/2 cos x

K cosh y + (K2 − 1)1/2 cos x
. (3.17)

Clearly φ(x, y) = φ(−x, y), φ(π − x, y) = φ(π + x, y) and φ(x, y) = φ(x,−y), so that
the boundary conditions (3.9) and (3.10) are satisfied. Next we note that as y →∞

φ = K−1 + O(e−y), (3.18)

so that the condition at infinity is satisfied. Finally, since the Stuart vortex solution
ψ0(x, y, K) satisfies

∇2ψ0 = exp (−2ψ0), (3.19)

it follows that

∇2

(
∂ψ0

∂K

)
= −2

∂ψ0

∂K
e−2ψ0 . (3.20)

To facilitate evaluation of the integrals in (3.15) we remark that it follows from
(3.17) that

φ =
(1− ε)3/2

ε

(
λ+

ρ1

ε

)
, λ =

ε

1− ε2
. (3.21)

Then (3.15) can be written in the form

I1 = µ1I2, (3.22)

where

I1 =

∫ ∫
R

(
λ+

ρ1

ε

)
(∇ρ1 · ∇ψ0 + 2e−2ψ0ρ1) dx dy, (3.23)

I2 =

∫ ∫
R

(
λ+

ρ1

ε

)
2e−2ψ0ψ0 dx dy. (3.24)
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These integrals can now be expressed in terms of weighted density integrals of the
form

Js =

∫ ∫
R

ρs1e
−2ψ0 dx dy (3.25)

(see the Appendix) and

I1 = λJ1 +
3

2ε
J2, (3.26)

I2 = −λJ0 − 1

ε
J1 +

πε

1− ε2
. (3.27)

The integrals Js can be evaluated using Mathematica and we find that µ1 =
1
2
(1 + ε2)/(1− ε2) so that

µ = 1 +
M2∞
2

(
1 + ε2

1− ε2

)
, (3.28)

= 1 +M2
∞(K2 − 1

2
), (3.29)

where the last equation follows from (3.5). Equation (3.28) confirms our interpretation
of µ as an eigenvalue for the compressible Stuart vortex. This cannot be set equal to
unity when M∞ > 0 but must be calculated as part of the overall solution. Comparison
of (3.28) with numerical results will be given subsequently.

4. Numerical solution
Numerical solutions to (2.17) and (2.18) were sought using two different numerical

methods, one spectral based and the other based on second-order finite differences.
These are now described.

4.1. Finite-difference solution

We examine the formulation and reveal a difficulty by discretizing the boundary-
value problem (2.17)–(2.18), (2.19)–(2.22). We introduce a mesh ((I − 1)h, (J − 1)h),
1 6 I 6 M, 1 6 J 6 N, where (M − 1)h = π and take as unknowns ψd(I, J) =
ψ((I − 1)h, (J − 1)h), ρd(I, J) = ρ((I − 1)h, (J − 1)h), d and µ. We thus have a total of
2MN + 2 unknowns. If we apply discretized versions of (2.17) and (2.18) at the mesh
points (using (2.19)–(2.22) to obtain values of ψ and ρ at the ghost points adjacent to
∂R) we have 2MN equations to satisfy. Equation (2.24) provides one extra equation,
and so we are an equation short.

We provided an extra equation by insisting that the area integral of the vorticity
over R is equal to the line integral of the tangential velocity around ∂R. The tangential
velocity is zero everywhere on ∂R except at infinity, where it has unit value over a
distance π. Thus we have ∫ ∫

R

ω(x, y) dx dy = −π, (4.1)

where ω is obtained from

ω(x, y) = −ρ(x, y)e−2µψ(x,y). (4.2)
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Expressing (4.1)–(4.2) as an integral over the mesh leads to the condition that

M∑
I=1

N∑
J=1

W (I, J)ρd(I, J)e−2µψd(I,J) = π, (4.3)

where W (I, J) is a weighting function. We can thus close the system.
In practice three-point centred differences were used and the resulting system of

nonlinear equations were solved by Newton’s method. Unfortunately it was found
that the Jacobian matrix was poorly conditioned. A possible explanation is that
the boundary conditions (2.19)–(2.22) imply (4.1). Thus the Jacobian matrix will be
singular in the limit h → 0, and consequently will be ill-conditioned for h small.
Nevertheless, convergence was obtained, although it was not in all cases quadratic.
Improved convergence was achieved by replacing the boundary condition (2.21) by
its derivative with respect to y, thus eliminating the displacement thickness d. In the
discrete version there are now only 2MN+1 unknowns and we can drop the vorticity
integral condition (4.3). The convergence was quadratic except near terminal Mach
numbers discussed in § 5.

4.2. Spectral method

We considered it essential to solve the boundary-value problem by an independent
method, and we now describe a spectral approach. This begins by writing ψ and ρ as

ψ = y tanh y + d+ ψ̃, (4.4)

ρ = 1 + ρ̃, (4.5)

ψ̃ =

N−1∑
n=0

M−1∑
m=0

amn cos (mx)φ2n(y), (4.6)

ρ̃ =

N−1∑
n=0

M−1∑
m=0

bmn cos (mx)φ2n(y), (4.7)

where amn and bmn are coefficients to be determined,

φk(y) =
1

[2kΓ (k + 1)
√
π]1/2

exp

(
−y

2

2

)
Hk(y), (4.8)

and Hk(y) is the Hermite polynomial of order k. The functions φk are orthonormal
in (−∞,∞) and the expansion

g(y) =

∞∑
n=0

dnφn(y), dn =

∫ ∞
−∞
g(v)φn(v) dv, (4.9)

is convergent if the integral ∫ ∞
−∞
|g(v)|2 dv (4.10)

exists. The expansions (4.6)–(4.7) satisfy the boundary conditions (2.19)–(2.20) pro-
vided ψ̃ and ρ̃ decay sufficiently rapidly as y →∞.

Equations (2.17) and (2.18) were satisfied by a collocation method. Equations
(4.6) and (4.7) were substituted into each of (2.17) and (2.18). When these equations



Steady compressive flows with compact vorticity 37

K d (numerical) d (exact)

1.1 −0.597837 −0.597837
1.2 −0.510823 −0.510826
1.4 −0.356644 −0.356675
1.6 −0.222979 −0.223143
1.8 −0.104811 −0.105360
2.0 0.001391 0.0

Table 1. Calculated values of d, [M,N] = [40, 30] compared exact results, M∞ = 0.

are satisfied at the collocation points (xi, yj), i = 1, . . .M, j = 1, . . . N, where xi =
π(i − 1

2
)/M are the zeros of cos (Mx) and yj is the jth zero of H2N(y), 2 ×M × N

nonlinear equations are obtained for the 2 ×M × N + 2 unknowns am,n, bm,n, m =
0, . . . ,M−1, n = 0, . . . , N−1, d and µ. One additional equation is supplied when (4.6)–
(4.7) are substituted into the circulation equations (4.1)–(4.2) and a further equation
is obtained by specifying f, the mass flow in the cat’s eye in (2.23).

This gives 2×M ×N + 2 equations for an equivalent number of unknowns. These
were solved by a standard Newton method with analytical evaluation of the Jacobian,
which is full. The problem with ill-conditioning of the Jacobian found for the finite-
difference method was also encountered in the spectral method. This did not prove
fatal but did produce first-order rather than quadratic convergence. All numerical
solutions reported below have average residual less than 10−12.

5. Results and discussion
In what follows, except where otherwise noted, all numerical results discussed

were obtained with the spectral method. The continuation of the Stuart vortex from
M∞ = 0 was obtained by first fixing K and calculating f from (2.23). A numerical
solution was then obtained with M∞ = 0 using as an initial approximation a set
of coefficients amn calculated using (1.6), bmn = 0, µ = 1 and d = ln (K/2) . The
compressible homentropic Stuart vortex array then admits a two-parameter family of
solutions. Our strategy was to hold f fixed, equivalent via (2.23) to holding K fixed,
and to continue numerically by incrementing M∞ in small intervals. Most spectral
solutions reported below use [M,N] = [30, 40] although other values were used a
check. Some [60, 60] spectral solutions, the highest resolution that could be achieved
with available computing resources, were also obtained.

Accuracy was tested by comparing numerical results with the analytic solution
at M = 0, by comparing numerical solutions for µ with (3.29) at small M∞, and
by comparing the results of the finite-difference and spectral calculations. Table 1
shows a comparison of the calculated values of d (spectral method) with the exact
d = ln (K/2) at M = 0. There is six-figure agreement at K = 1.1 (found also for
ψ(x, y)) but this declines to three-figure agreement at K = 2.0. This is because as
K increases the vortex cores become more concentrated, with higher gradients – at
K = 2 the vorticity ratio |ω2/ω1| = |ω2(0, π)/ω1(0, 0)| is 194.28.

Numerical solutions were obtained with K = 1.005, 1.01, 1.05, 1.1, 1.2, 1.4, 1.5,
1.6, 1.8, 2.0 for a range of M∞ varying from M∞ = 0 to a maximum value which
will be discussed subsequently. Figures 1–4 show contour plots of ψ, ρ, the local
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Figure 1. Compressible Stuart vortex K = 1.1, M∞ = 0.677. Streamlines.
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Figure 2. Compressible Stuart vortex K = 1.1, M∞ = 0.677. Contours of density.
Solid lines ρ > ρ∞. Dotted lines ρ < ρ∞.

Mach number

Ml = M∞
((∂ψ/∂x)2 + (∂ψ/∂y)2)1/2

ρ(1+γ)/2
, (5.1)

and ∇ · u for K = 1.1, M = 0.677. The maximum Mach number Mmax = MaxR (Ml)
occurs almost on the cat’s eye boundary at x = (2n− 1)π for n = 0,±1,± . . .. Figures
5–10 summarize the effect of compressiblity on the Stuart vortex at fixed K . Plotted
are µ (figure 5), d (figure 6), the vorticity ratio |ω2/ω1| (figure 7), the density ratio
ρ2/ρ1 = ρ(π, 0)/ρ(0, 0) (figure 8), the vorticity thickness

δ(K,M∞) = − 1

π

∫ ∫
R;y>0

yω(x, y) dx dy, (5.2)

(figure 9) and Mmax (figure 10). The broad effects of increasing M∞ at fixed K are
to decrease ρ2/ρ1 and δ while increasing Mmax and |ω2/ω1|. For M∞ = 1.8, 2.0, the
calculations show increases in |ω2/ω1| by more than two orders of magnitude over
a small range of M∞. This occurs because the vorticity eigenvalue µ increases faster
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Figure 3. Compressible Stuart vortex K = 1.1, Mv = 0.677. Contours of constant Mach number.
Solid lines Ml < 1, dashed lines Ml > 1.
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Figure 4. Compressible Stuart vortex K = 1.1, Mv = 0.677. Contours of ∇ · u.
Solid lines ∇ · u < 0. Dashed lines ∇ · u > 0.
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Figure 5. Vorticity constant µ versus M∞. K = 1.005, 1.01, 1.05, 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0,
K increasing left to right.
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Figure 6. Displacement thickness d versus M∞. K increasing bottom to top.
Values of K as in figure 5.
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Figure 7. Vorticity ratio ω2/ω1. K increasing bottom to top. Values of K as in figure 5.
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Figure 8. Density ratio ρ2/ρ1. K decreasing left to right. Values of K as in figure 5.
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Figure 9. Vorticity thickness δ(M∞)/δ(0).
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Figure 10. Maximum Mach number. K decreasing left to right. Values of K as in figure 5.

(a) M∞ µ (numerical) µ (R–J) (b) M∞ µ (numerical) µ (R–J)

0 1.000000 1.0 0 1.000000 1.0
0.1 1.007175 1.0071 0.1 1.014977 1.0146
0.2 1.029649 1.0284 0.2 1.065001 1.0584
0.3 1.070616 1.0639 0.3 1.171643 1.1314
0.4 1.136492 1.1136 0.4 1.416803 1.2336

Table 2. Calculated values of µ, [M,N] = [40, 30] compared with results from Rayleigh–Janzen
expansion. (a) K = 1.1. (b) K = 1.4

than the density at the vortex centre decreases. It is of interest to note that the ratio
δ(K,M∞)/δ(K, 0) decreases with increasing M∞ for all K considered.

In table 2 we show the computed values of µ for K = 1.1 compared to the
predictions of the Rayleigh–Janzen expansion, equation (3.29). This is satisfactory
at small M∞, giving us confidence in both our numerics and the Rayleigh–Janzen
analysis, when M∞ > 0, but there are discrepancies at larger M∞. We remark that
the expansion (3.1) and (3.2), where ψ1 is determined by the boundary-value problem



42 D. I. Meiron, D. W. Moore and D. I. Pullin

K M∞ δρ (mean) δρ (max) δψ (mean) δψ (max)

1.1 0.2 1.2× 10−7 8.0× 10−7 6.9× 10−7 3.6× 10−6

1.1 0.4 8.4× 10−7 3.8× 10−6 5.4× 10−7 1.6× 10−6

1.1 0.68 4.5× 10−5 1.3× 10−3 1.4× 10−5 3.0× 10−5

Table 3. Comparison of solutions for ψ(x, y) and ρ(x, y) obtained by the spectral method with
[M,N] = [40, 30] and the finite-difference method using Richardson extrapolation from 21×81 and
41 × 61 grids. The mean – taken over the domain (0 < x, π, 0 < y < π) – and the maximum of the
absolute value of the difference is displayed.

(3.8)–(3.11), will not satisfy the flux condition (2.23). This means that the Rayleigh–
Janzen expansion is yielding a slightly different compressible continuation of the
Stuart vortex. The only parameter at our disposal is K and, if we wish to reproduce
the solution found numerically, we must choose K so that (2.23) is satisfied. Now the
flux condition is violated because ψ1(0, 0) − ψ1(π, 0) is non-zero (in general) and to
compensate for this we must perturb ψ0 by O(M2∞), which requires a shift in K of the
same order. The fields ψ1 and ρ1 will be perturbed by O(M2∞) and (3.15) shows that
the change in µ1 is O(M2∞) also. Thus the effect on µ is O(M4∞). It is thus legitimate to
compare the numerical and analytical predictions of µ, provided O(M4∞) is neglected.
In table 3 we show a comparison of solutions obtained using the spectral and finite
difference methods for K = 1.1 and for three values of M∞. This is made on the basis
of the mean and the maximum of the absolute difference between computed solutions
over the domain indicated in that table. This comparison is satisfactory and further
supports our confidence in our numerical and analytical results.

It was found that all branches followed by continuation in M∞ with K fixed
terminated at a point where Mmax was somewhat larger than unity. This can be seen
in figure 10. That this was not a result of the choice of M∞ as continuation parameter
was verified by employing arclength continuation in the space of all the unknowns.
With fixed arclength increment, and using fourth-order extrapolation in arclength
to estimate the next approximation, this led to exceedingly small increments in all
parameters but no change in the values of M∞ at which the Newton method failed
to find solutions. From this we conclude that there is not a turning point along say
a branch continued in M∞, and that the branch termination was genuine.

One aim of the present investigation was to search for numerical solutions to (2.17)–
(2.18) corresponding to smooth transonic flow. It is well known (Morawetz 1956, 1957,
1958) that solutions of the two-dimensional Euler equations corresponding to smooth
irrotational, transonic flow past fixed airfoil shapes are, if they exist, isolated. Moore
& Pullin (1987) and Ardalan et al. (1995) found families of smooth transonic flow
for compressible flows with constant-pressure vortex cores. They interpreted this
non-conformity with Morawetz’s results as due to the free-boundary character of the
hollow-core compressible vortex, the boundary of which was able to adjust its shape
when M∞ changed. Moore & Pullin (1998), however, find no solutions with smooth
transonic flow for the compressible Hill’s spherical vortex.

To investigate this question for the compressible Stuart vortex, some high-resolution
solutions were obtained with K = 1.1, [M,N] = [60, 60] at values of M∞ near the
onset of locally supersonic flow. Table 4 shows Mmax against M∞ for three different
resolutions, [M,N] = [20, 60], [40, 60] and [60, 60]. All three sets and the finite-
difference calculations show the onset of locally supersonic flow for M∞ in the range
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Figure 11. am,n vs. m; M∞ = 0.667, n = 25 (solid), 35 (dashed), 45 (dotted), 55 (dash-dot).
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Figure 12. bm,n vs. m; M∞ = 0.667, n = 25, 35, 45, 55. For key see figure 11.

0.674 < M∞ < 0.675. A run with a 71 × 281 grid at M∞ = 0.68 failed to converge.
Three-point interpolation gives Mmax = 1.0000 at M∞ ≈ 0.6746.

In figures 11 and 12 we plot the decay of the coefficients |amn| and |bmn| of (4.6)–
(4.7) with m, for several values of n, with M∞ = 0.667, at which value the flow is
everywhere subsonic with Mmax = 0.9745. There appears to be exponential decay of
the coefficients indicating convergence of the series in (4.6)–(4.7). In order to determine
where exponential convergence is lost, a form for the variation of the magnitude of
the coefficients

|amn| ∼ exp [−α(n,M∞)m], |bmn| ∼ exp [−β(n,M∞)m], (5.3)

was assumed, and least-squares fits of log (|amn|), log (|bmn|) versus m, 25 6 m 6 55
(to avoid end effects) were made for several values of n. The slopes of these fits give
estimates of α(n,M∞), β(n,M∞), which are plotted in figures 13 and 14 respectively
versus M∞ for several n. Both α and β seem to pass through zero near M∞ ≈ 0.678,
indicating loss of exponential convergence for M∞ > 0.678. From table 4, Mmax =
1.014 at this M∞. This provides some evidence for the existence of a very small band,
0.6746 < M∞ < 0.678, in which locally supersonic flow exists. Figures 15 and 16
show the decay of |amn| and |bmn| respectively with m, for M∞ = 0.677, at which
Mmax = 1.009. The variation of the magnitude of the coefficients with m shows a
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Figure 13. α vs. M∞; n = 30 (solid), 40 (dashed), 50 (dotted), 59 (dash-dot).
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Figure 14. β vs. M∞; n = 30, 40, 50, 59. For key see figure 13.

M∞ [20, 60] [40, 60] [60, 60] RE

0.667 0.974521 0.974534 0.974534 0.9745147
0.668 0.977709 0.977726 0.977726 0.9777113
0.669 0.980934 0.980956 0.980957 0.9809420
0.670 0.984200 0.984230 0.984230 0.9842140
0.671 0.987509 0.987550 0.987550 0.9875333
0.672 0.990866 0.990922 0.990923 0.9909050
0.673 0.994275 0.994353 0.994354 0.9943357
0.674 0.997741 0.997852 0.997856 0.9978353
0.675 1.001271 1.001434 1.001444 1.0014180
0.676 1.004874 1.005120 1.005147 1.0051123
0.677 1.008560 1.008948 1.009042 1.0089787
0.678 1.012342 1.012995 1.013536 1.0134110
0.679 1.016238 1.017460 1.015035 1.0165597
0.680 1.020273 1.023075 1.020522 1.0225863

Table 4. Calculated maximum local Mach number Mmax , spectral method with various resolutions
[M,N] and Richardson extrapolation (RE) from 31×121 and 61×241 grids for the finite-difference
calculation.
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Figure 15. am,n vs. m; M∞ = 0.677, n = 25 (solid), 35 (dashed), 45 (dotted), 55 (dash-dot).
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Figure 16. bm,n vs. m; M∞ = 0.677, n = 25, 35, 45, 55. For key see figure 15.

lack of smoothness compared with figures 11 and 12 but there is apparent slow
exponential decay, albeit with some small upward curvature for the |amn|.

In figures 17 and 18 we show contours of 1 − Ml for both M∞ = 0.677 and
M∞ = 0.680, windowed on the region near (x, y) = (π, 1.04), near where locally
supersonic flow is indicated. For M∞ = 0.677 the transonic flow region is of sur-
prisingly large extent (given the small value of Mmax − 1), and both this figure and
similar plots of ρ and ∇ · u (not shown) indicate smooth flow. In contrast, the 1−Ml

contours for M∞ = 0.680, at which exponential convergence of the cosine series
seems to be lost, show irregularity. Note the separation into two local minima of
1 −Ml for this case. This may indicate the formation of incipient weak shocks with
shock strength M2

l − 1 = O(10−2). This would explain the convergence failure for
the cosine series. We recall that owing to enforced symmetry about x = π, such
weak shocks must also be symmetrical, corresponding to a compression/expansion
pair.

6. Concluding remarks
We have obtained analytical and accurate spectral and finite-difference numeri-

cal solutions corresponding to the continuation to finite Mach number of a family
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Figure 17. Contours of local Mach number 1−Ml . M∞ = 0.677. Solid lines, 1−Ml > 0.
Dashed lines, 1−Ml < 0.

of Stuart vortex solutions of the inviscid Euler equations in two dimensions. Un-
expectedly, the homentropic continuation of the incompressible Stuart vortex into
the compressible regime required the introduction of an effective eigenvalue into the
vorticity–density–streamfunction relationship, whose value for fixed Mach number (at
infinity) and mass-flow rate within the recirculating bubble region or vortex ‘cat’s eye’
must be determined as part of the overall solution. The numerical solutions indicated
that when the Mach number at infinity was increased at fixed mass-flow rate, the
ratio of the vorticity at the vortex centre to that at the stagnation point separating
the cat’s eye regions, increased very rapidly, while the corresponding density ratio
decreased.

It was found that solution branches with fixed mass-flow rate always terminated
when the maximum local Mach number just exceeded unity. For one value of the
mass-flow rate corresponding to a value of the Stuart vortex parameter K = 1.1,
we found some evidence for the existence of a very small range of free-stream
Mach numbers 0.6746 < M∞ < 0.678 corresponding to smooth transonic flow. This
non-conformity with the results of Morawetz (1956, 1957, 1958) may be due to the
rotational character of the present Stuart vortex flow. For M∞ > 0.678 we speculate
that weak, almost-entropy-preserving shocks may appear.

We remark that (2.17) and (2.18) with the boundary conditions (2.19)–(2.22) do not
define a unique continuation of the Stuart vortex solution to finite Mach number.
Moore & Pullin (1998) discuss several admissible continuations of the incompress-
ible Hill’s spherical vortex flow to give solutions of the steady compressible Euler
equations. These include the assumption of homethalpic flow in place of the present
homentropic flow and the application of a transformation which generates new sol-
utions of the steady Euler equations from a given solution (Munk & Prim 1947).
These methods can be applied to the present Stuart vortex flow. Finally, we have
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Figure 18. Contours of local Mach number 1−Ml . M∞ = 0.680. Solid lines, 1−Ml > 0.
Dashed lines, 1−Ml < 0.

neither considered the existence of solution branches not attached to the incompress-
ible limit, such as a bifurcation from infinity, nor investigated a formulation which
would allow for possible bifurcation to solutions not symmetrical about x = ±nπ, n
integer.

Appendix
We start by considering the integrand of I1. First we remark that

∇ρ1 · ∇ψ0 = ∇ · (ρ1∇ψ0)− ρ1∇2ψ0, (A 1)

so that in view of (3.19)

∇ρ1 · ∇ψ0 = ∇ · (ρ1∇ψ0)− ρ1e
−2ψ0 . (A 2)

Hence

I1 =

∫ ∫
R

(
λ+

ρ1

ε

)
(∇ · (ρ1∇ψ0) + ρ1e

−2ψ0 ) dx dy. (A 3)

Now, denoting the unit outward normal to ∂R by n,∫ ∫
R

∇ · (ρ1∇ψ0) dx dy =

∫
∂R

ρ1(n · ∇ψ0) dσ, (A 4)

where σ is arclength on ∂R. The integral on the right of (A 4) is zero since ∂ψ0/∂n = 0
on the base and on the vertical sides of R and ρ1 is exponentially small and ∂ψ0/∂n
is bounded as y →∞. Hence

I1 =

∫ ∫
R

(
λ+

ρ1

ε

)
ρ1e

−2ψ0 dx dy +
1

ε

∫ ∫
R

ρ1∇ · (ρ1∇ψ0) dx dy. (A 5)



48 D. I. Meiron, D. W. Moore and D. I. Pullin

We can show that

ρ1∇ · (ρ1∇ψ0) = ∇ · ( 1
2
ρ2

1∇ψ0) + 1
2
ρ2

1∇2ψ0. (A 6)

If we substitute (A 6) into the integral on the right of (A 5) we find that

I1 =

∫ ∫
R

(
λ+

ρ1

ε

)
ρ1e

−2ψ0 dx dy +
1

2ε

∫ ∫
R

ρ2
1e
−2ψ0 dx dy, (A 7)

where we have again used (3.10); the integral of the first term on the right of (A 6)
can be seen to be zero since∫ ∫

R

∇ · ( 1
2
ρ2

1∇ψ0) dx dy =
∫
∂R

1
2
ρ2

1(n · ∇ψ0) dσ, (A 8)

and the boundary integral is zero. Introducing the definition of Js given in (3.25)
enables us to express I1 in the form

I1 = λJ1 +
3

2ε
J2. (A 9)

To reduce I2 we introduce the function

φ̂ = λ+
ρ1

ε
=

εφ

(1− ε2)3/2
, (A 10)

so that

I2 = 2

∫ ∫
R

φ̂ψ0e
−2ψ0 dx dy. (A 11)

Now, since φ̂ is a constant multiple of φ,

∇2φ̂ = −2e−2ψ0φ̂, (A 12)

and so

I2 = −
∫ ∫

R

∇2φ̂ψ0 dx dy. (A 13)

But for any pair of functions, for which the integrals converge, Green’s identity states
that ∫ ∫

R

(ψ0∇2φ̂− φ̂∇2ψ0) dx dy =

∫
∂R

ψ0(n · ∇φ̂) dσ −
∫
∂R

φ̂(n · ∇ψ0) dσ. (A 14)

The first boundary integral is zero. However

φ̂ =→ λ as y →∞ (0 6 x 6 π), (A 15)

and
∂ψ0

∂y
=→ 1 as y →∞ (0 6 x 6 π), (A 16)

so that the contribution to the line integral from the upper boundary of R is πλ. Thus
on rearranging (A 14) and using (3.10)

I2 = −
∫ ∫

R

φ̂e−2ψ0 dx dy + πλ, (A 17)

or

I2 = −λJ0 − 1

ε
J1 +

πε

1− ε2
. (A 18)
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Finally, we substitute for ψ0 from (3.4) and for ρ1 from (3.7) to find

Js = (1− ε2)εs
∫ ∞

0

4

1 + t2

(
1− t2
1 + t2

)s ∫ 1

0

(
1 + u2

1− u2
+ ε

1− t2
1 + t2

)−s−2
1

1− u2
du dt, (A 19)

where t = tan ( 1
2
x) and u = tan ( 1

2
y). Mathematica gives

J0 = π, J1 = − πε2

1− ε2
, J2 =

πε2(1 + 3ε2)

3(1− ε2)2
. (A 20, A 21, A 22)
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